Effect of calcination temperature on the activity of solid Ca/Al composite oxide-based alkaline catalyst for biodiesel production.

نویسندگان

  • Yong-Lu Meng
  • Bo-Yang Wang
  • Shu-Fen Li
  • Song-Jiang Tian
  • Min-Hua Zhang
چکیده

A solid Ca/Al composite oxide-based alkaline catalyst containing Ca(12)Al(14)O(33) and CaO was prepared by chemical synthesis and thermal activation from sodium aluminate solution and calcium hydroxide emulsion. The effect of calcination temperatures ranging from 120 °C to 1000 °C on activity of the catalyst was investigated. The catalyst calcined at 600 °C showed the highest activity with >94% yield of fatty acid methyl esters (i.e. biodiesel) when applied to the transesterification of rapeseed oil at a methanol:oil molar ratio of 15:1 at 65 °C for 3h. Structure and properties of the catalyst were studied and the characterizations with XRD, TGA, FTIR, BET, and SEM demonstrated that the performance of the catalyst was closely related to its specific surface area and crystalline structure. In particular, the generation of crystalline Ca(12)Al(14)O(33) improved the catalytic activity due its synergistic effect with CaO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic Performance and Characterization of Promoted K-La/ZSM-5 Nanocatalyst for Biodiesel Production

The promoted K-La nanocatalysts supported on ZSM-5 zeolite were prepared via wetness impregnation method and tested for biodiesel production from soybean oil. The effects of different weight percentage of La, loading of K as a promoter and calcination conditions on structure and activity of catalyst were investigated. Results showed that the supported catalyst containing 7wt.% of La was pro...

متن کامل

Immobilizing Phosphotungstic Acid on Al2O3-ZnO Nano Mixed Oxides as Heterogeneous Catalyst for Biodiesel Production by Esterification of Free Fatty Acids

In this study, esterification reaction of different carboxylic acids (Acetic acid, Palmitic acid, Oleic acid) with ethanol was investigated by ZnO, Al2O3-ZnO mixed oxide and phosphotungestic acid (10 %wt) immobilized on the Al2O3-ZnO mixed oxide. The heterogeneous catalysts were characterized by XRD, BET, FE-SEM and EDX techniques. Optimum yield was achieved by using 10% HPW/Al2O3-ZnO as the be...

متن کامل

Biodiesel Production from Palm Oil using Heterogeneous Base Catalyst

In this study, the transesterification of palm oil with methanol for biodiesel production was studied by using CaO–ZnO as a heterogeneous base catalyst prepared by incipient-wetness impregnation (IWI) and co-precipitation (CP) methods. The reaction parameters considered were molar ratio of methanol to oil, amount of catalyst, reaction temperature, and reaction time. The optimum conditions—15:1 ...

متن کامل

Vanadium Oxide Supported on Al-modified Titania Nanotubes for Oxidative Dehydrogenation of Propane

In this study, characterization of vanadia supported on Al-modified titania nanotubes (TiNTs) synthesized by the alkaline hydrothermal treatment of TiO2 powders has been reported. A promising catalyst for oxidative dehydrogenation (ODH) of propane was prepared via the incipient wetness impregnation method. The morphology and crystalline structure of TiNTs were characterized by transmission elec...

متن کامل

Alkaline Earth Metal Oxide Catalysts for Biodiesel Production from Palm Oil: Elucidation of Process Behaviors and Modeling Using Response Surface Methodology

Four different alkaline earth metal oxides i.e. MgO, CaO, SrO and BaO were used as heterogeneous catalysts for biodiesel production from palm oil. Effects of critical process variables i.e. reaction time, methanol to oil ratio and temperature were investigated. The results were then fitted to a historical design to study the Analysis of Variance (ANOVA), to characterize interactions between...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 128  شماره 

صفحات  -

تاریخ انتشار 2013